Microservice instances selection and load balancing in fog computing using deep reinforcement learning approach

点击次数:254   下载次数:0
外文摘要:Fog -native computing is an emerging paradigm that makes it possible to build flexible and scalable Internet of Things (IoT) applications using microservice architecture at the network edge. With this paradigm, IoT applications are decomposed into multiple fine-grained microservices, strategically deployed on various fog nodes to support a wide range of IoT scenarios, such as smart cities and smart farming. Nonetheless, the performance of these IoT applications is affected by their limited effectiveness in processing offloaded IoT requests originating from multiple IoT devices. Specifically, the requested IoT services are composed of multiple dependent microservice instances collectively referred to as a service plan (SP). Each SP comprises a series of tasks designed to be executed in a predefined order, with the objective of meeting heterogeneous Quality of Service (QoS) requirements (e.g., low service delays). Different from the cloud, selecting the appropriate service plan for each IoT request can be a challenging task in dynamic fog environments due to the dependency and decentralization of microservice instances, along with the instability of network conditions and service requests (i.e., change quickly over time). To deal with this challenge, we study the microservice instances selection problem for IoT applications deployed on fog platforms and propose a learning -based approach that employs Deep Reinforcement Learning (DRL) to compute the optimal service plans. The latter optimizes the delay of application requests while effectively balancing the load among microservice instances. In our selection process, we carefully address the plan -dependency to efficiently select valid service plans for every request by introducing two distinct approaches; an action masking approach and an adaptive action mapping approach. Additionally, we propose an improved experience replay to address delayed action effects and enhance our model training efficiency. A series of experiments were conducted to assess the performance of our Microservice Instances Selection Policy (MISP) approach. The results demonstrate that our model reduces the average failure rate by up to 65% and improves load balance by up to 45% on average when compared to the baseline algorithms.
外文关键词:Internet of Things;Fog Computing;Deep reinforcement learning;Microservice selection;Deadline-aware;Load balancing
作者:Boudieb, Wassim;Malki, Abdelhamid;Malki, Mimoun;Badawy, Ahmed;Barhamgi, Mahmoud
作者单位:Qatar Univ;Ecole Super Informat
期刊名称:FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE
期刊影响因子:0.0
出版年份:2024
出版刊次:156
原文传递申请:江苏省科技资源(工程技术文献)统筹服务平台

  1. 编译服务:智慧农业
  2. 编译者:虞德容
  3. 编译时间:2025-01-23