Drone-Based Multispectral Remote Sensing Inversion for Typical Crop Soil Moisture under Dry Farming Conditions

点击次数:269   下载次数:0
外文摘要:Drone multispectral technology enables the real-time monitoring and analysis of soil moisture across vast agricultural lands. overcoming the time-consuming, labor-intensive, and spatial discontinuity constraints of traditional methods. This study establishes a rapid inversion model for deep soil moisture (0-200 cm) in dryland agriculture using data from drone-based multispectral remote sensing. Maize, millet, sorghum, and potatoes were selected for this study, with multispectral data, canopy leaf, and soil moisture content at various depths collected every 3 to 6 days. Vegetation indices highly correlated with crop canopy leaf moisture content (p < 0.01) and were identified using Pearson correlation analysis, leading to the development of linear and nonlinear regression models for predicting moisture content in canopy leaves and soil. The results show a significant linear correlation between the predicted and actual canopy leaf moisture levels for the four crops, according to the chosen vegetation indices. The use of canopy leaf moisture content to predict surface soil moisture (0-20 cm) demonstrated enhanced accuracy. The models designed for the top 20 cm of soil moisture successfully estimated deep soil moisture levels (up to 200 cm) for all four crops. The 20 cm range soil moisture model showed improvements over the 10 cm range model, with increases in Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Determination (R-2), and Nash-Sutcliffe Efficiency Coefficient (NSE) by 0.4, 0.8, 0.73, and 0.34, respectively, in the corn area; 0.28, 0.69, 0.48, and 0.25 in the millet area; 0.4, 0.48, 0.22, and 0.52 in the sorghum area; and 1.14, 0.81, 0.73, and 0.56 in the potato area, all with an average Relative Error (RE) of less than 10% across the crops. Using drone-based multispectral technology, this study forecasts leaf water content via vegetation index analysis, facilitating swift and effective soil moisture inversion. This research introduces a novel method for monitoring and managing agricultural water resources, providing a scientific basis for precision farming and moisture variation monitoring in dryland areas.
外文关键词:vegetation index;soil moisture content;inversion;canopy leaf moisture content
作者:Qu, Tengteng;Li, Yaoyu;Zhao, Qixin;Yin, Yunzhen;Wang, Yuzhi;Li, Fuzhong;Zhang, Wuping
作者单位:Shanxi Agr Univ
期刊名称:AGRICULTURE-BASEL
期刊影响因子:0.0
出版年份:2024
出版刊次:14(3)
原文传递申请:江苏省科技资源(工程技术文献)统筹服务平台

  1. 编译服务:智慧农业
  2. 编译者:虞德容
  3. 编译时间:2025-02-06