The Detection of Ear Tag Dropout in Breeding Pigs Using a Fused Attention Mechanism in a Complex Environment

点击次数:304   下载次数:0
外文摘要:The utilization of ear tags for identifying breeding pigs is a widely used technique in the field of animal production. Ear tag dropout can lead to the loss of pig identity information, resulting in missing data and ambiguity in production management and genetic breeding data. Therefore, the identification of ear tag dropout is crucial for intelligent breeding in pig farms. In the production environment, promptly detecting breeding pigs with missing ear tags is challenging due to clustering overlap, small tag targets, and uneven sample distributions. This study proposes a method for detecting the dropout of breeding pigs' ear tags in a complex environment by integrating an attention mechanism. Firstly, the approach involves designing a lightweight feature extraction module called IRDSC using depthwise separable convolution and an inverted residual structure; secondly, the SENet channel attention mechanism is integrated for enhancing deep semantic features; and finally, the IRDSC and SENet modules are incorporated into the backbone network of Cascade Mask R-CNN and the loss function is optimized with Focal Loss. The proposed algorithm, Cascade-TagLossDetector, achieves an accuracy of 90.02% in detecting ear tag dropout in breeding pigs, with a detection speed of 25.33 frames per second (fps), representing a 2.95% improvement in accuracy, and a 3.69 fps increase in speed compared to the previous method. The model size is reduced to 443.03 MB, a decrease of 72.90 MB, which enables real-time and accurate dropout detection while minimizing the storage requirements and providing technical support for the intelligent breeding of pigs.
外文关键词:focal loss;SENet;ear tag dropout detection;IRDSC;Cascade Mask R-CNN
作者:Wang, Buyu;Duan, Weijun;Wang, Fang;Fu, Xueliang;Li, Honghui
作者单位:Inner Mongolia Agr Univ
期刊名称:AGRICULTURE-BASEL
期刊影响因子:0.0
出版年份:2024
出版刊次:14(4)
原文传递申请:江苏省科技资源(工程技术文献)统筹服务平台

  1. 编译服务:智慧农业
  2. 编译者:虞德容
  3. 编译时间:2025-03-03