Machine learning prediction of multiple anthelmintic resistance and gastrointestinal nematode control in sheep flocks

点击次数:301   下载次数:0
外文摘要:The high prevalence of Haemonchus contortus and its anthelmintic resistance have affected sheep production worldwide. Machine learning approaches are able to investigate the complex relationships among the factors involved in resistance. Classification trees were built to predict multidrug resistance from 36 management practices in 27 sheep flocks. Resistance to five anthelmintics was assessed using a fecal egg count reduction test (FECRT), and 20 flocks with FECRT < 80% for four or five anthelmintics were considered resistant. The data were randomly split into training (75%) and test (25%) sets, resampled 1,000 times, and the classification trees were generated for the training data. Of the 1,000 trees, 24 (2.4%) showed 100% accuracy, sensitivity, and specificity in predicting a flock as resistant or susceptible for the test data. Forage species was a split common to all 24 trees, and the most frequent trees (12/24) were split by forage species, grazing pasture area, and fecal examination. The farming system, Suffolk sheep breed, and anthelmintic choice criteria were practices highlighted in the other trees. These management practices can be used to predict the anthelmintic resistance status and guide measures for gastrointestinal nematode control in sheep flocks.
外文关键词:machine learning;random forest;CARTs;multidrug resistance;gastrointestinal nematodes
作者:Niciura, Simone Cristina Meo;Sanches, Guilherme Martineli
作者单位:Univ Sao Paulo;Embrapa Pecuaria Sudeste
期刊名称:REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA
期刊影响因子:0.0
出版年份:2024
出版刊次:33(1)
原文传递申请:江苏省科技资源(工程技术文献)统筹服务平台

  1. 编译服务:智慧农业
  2. 编译者:虞德容
  3. 编译时间:2025-04-03