外文摘要:This study proposed an efficient framework for optimizing the design and operation of combined systems of wastewater treatment plants (WWTP) and constructed wetlands (CW). The framework coupled a WWTP model with a CW model and used a multi-objective evolutionary algorithm to identify trade-offs between energy consumption, effluent quality, and construction cost. Compared to traditional design and management approaches, the framework achieved a 27 % reduction in WWTP energy consumption or a 44 % reduction in CW cost while meeting strict effluent discharge limits for Chinese WWTP. The framework also identified feasible decision variable ranges and demonstrated the impact of different optimization strategies on system performance. Furthermore, the contributions of WWTP and CW in pollutant degradation were analyzed. Overall, the proposed framework offers a highly efficient and cost-effective solution for optimizing the design and operation of a combined WWTP and CW system.
外文关键词:Cost-benefit;random forest;Multi-objective optimization;Activated sludge model No.2d;Optimal control strategies
作者:Yang, Shan-shan;Dai, Wei;Pang, Ji-Wei;Zhao, Ying-Jun;Ding, Jie;Sun, Han-Jun;Cui, Hai;Mi, Hai-Rong;Zhao, Yi-Lin;Zhang, Lu-Yan;Ren, Nan-Qi
作者单位:Yancheng Inst Technol;Harbin Inst Technol;Harbin Engn Univ;CECEP Digital Technol Co Ltd;Zhejiang Univ Technol Engn Design Grp Co LTD
期刊名称:BIORESOURCE TECHNOLOGY
期刊影响因子:0.0
出版年份:2024
出版刊次:399
原文传递申请:江苏省科技资源(工程技术文献)统筹服务平台